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Higher Baryon Resonances in the Static Model* 
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The N/D solution to the static model, with linear approximation to the D function, is applied to a sequence 
of meson-baryon scattering problems. As in the old strong-coupling model, it is found that the N and A are 
the first two members of a sequence of particles with I = J = j , §, §, f, • • • , and that an analogous sequence 
is obtained when strange particles and SU(3) symmetry are included. In both cases, the /== f particle is dis
cussed in some detail. In the SU(2) case, general expressions are also derived for the widths of all the other 
members the sequence. 

I. INTRODUCTION 

TH E simplest model for the P-wave scattering of 
baryons and pseudoscalar mesons is the static 

limit of the N/D method, in which only baryon-
exchange forces are considered and the D function is 
approximated by a straight line. The essential element 
in this approximation is that the baryons are considered 
so heavy compared to the mesons that their recoil can 
be neglected. This was the model used by Chew1 to 
illustrate the reciprocal bootstrap between the nucleon 
(N) and the (f ,§) isobar (A). Within the same calcula-
tional model, an analogous scheme has been shown re
cently to work for the SU(3) multiplets to which the N 
and the A belong.2,3 

In this model, only ratios of coupling constants can 
be calculated. Unless additional dynamical assumptions 
are made,4 we must give up the possibility of deter
mining mass differences. However, we can always check 
whether the signs and relative magnitudes of the forces 
are consistent with a given scheme of particles. By 
considering the scattering of mesons from excited states 
of nucleons, we find that the method predicts a sequence 
of baryon states in both the SU(2) and SU(3) models, 
of which the familiar N and A (spin-J octet and 
spin-f decimet) are the first two. 

The calculational scheme is elementary. A meson-
baryon state is specified by its spin / , isotopic spin / , 
and total energy W. As is customary, let us use as 
variable co= W—Mi, where Mi is the mass of the baryon 
and ^*=2X(spin of the baryon). Only P waves occur 
in our calculations, so we use the amplitude 

fu(u) = ei8$m5/q*, (1.1) 

where q2— (co2—1) and 5 is the phase shift. The meson 
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where the masses of the (f,|) and (|,f) isobars are calculated in 
terms of the nucleon mass. 

mass is 1. The dynamics are provided by the crossing 
relation 

fu(a)= ILairPjj'frA-o). (1.2) 
i'j' 

Here, a and ft are the crossing matrices for isotopic spin 
and spin, respectively. In our static model, only P 
states occur, and spin is conserved just like isotopic 
spin. Thus both a and 0 are finite-dimensional. 

If a particle (which can be either a bound state or a 
resonance) occurs in a state with quantum numbers / 
and / , the corresponding amplitude has a pole yi// 
(o)u—o)). The force (or Born term), for which we take 
the exchange of all P-wave particles, then has the form 

Bu(a>)= E a i J ' f c / ' T / V ' V W / ' + w ) . ( 1 .3 ) 
i'j' 

If we define yui=0 whenever there is no particle in the 
(I, J) state, the sum in (1.3) may run over all possible 
V and J ' . We can now use Bufa) as the input to an 
N/D calculation of fu to obtain 

Nu(w)= E oLii'0JJ'yrj'iD{-mrjr)/iorj>+^), (1.4) 
I'J' 

co-coo fA W-XY^Nu^) 
Du(o>)^\ / Ao' , (1.5) 

TT J i (co7—coo)(co'—co) 

where coo is some subtraction point and A is a cutoff 
representing our ignorance of high-energy effects. The 
expressions (1.4) and (1.5) guarantee elastic unitarity 
and can thus be used whenever a one-channel approxi
mation5 is valid. 

Suppose Eqs. (1.4) and (1.5) give a dynamical par
ticle in the ( / , / ) state. Following Chew,1 we can approxi
mate Eq. (1.5) by a straight line 

Du(o))= (COJJ— co)/(coiv—coo). (1.6) 
Then 

7 r / = -N(o>u)/D'(o>rj)= E aii'Pjj'yi'j*'. (1.7) 

5 The general arguments of this section are unchanged by the 
presence of well-behaved inelastic effects, which can be taken into 
account by replacing Nu(co') in Eq. (1.5) by Rij(a)')Nij(oo')} 
where Ru is the ratio of total to elastic partial-wave cross sec
tions. This does not change any of the subsequent equations. 
Similarly, the particular type of cutoff we have chosen is not 
crucial. 
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This result suggests that a reasonable measure of the 
force which is independent of the unknown masses is 

FT £ au>$jj>yvj> 
i'j' 

(1.8) 

Thus, Fi/> 0 immediately provides us with a necessary 
condition for the existence of a particle, since all the 
residues yul must be positive. Of course, this condition, 
which corresponds roughly to the force being attractive, 
is not sufficient, but we cannot do any better without 
actually calculating the D function in Eq. (1.6). From 
Eqs. (1.4) and (1.5), it is evident that, with reasonably 
smooth high-energy behavior, particles in those states 
in which Fu is largest may be expected to have the 
lowest mass, and be therefore important in the dy
namics. On the other hand, if Fu is small, we expect 
the particle, if it exists at all, to have a very high mass 
and be therefore unimportant. Thus, from Fu we shall 
predict what states may have a particle and roughly 
the order of the masses, while from Eq. (1.7) we shall 
obtain relations among the coupling constants. 

Chew's reciprocal bootstrap1 is essentially Eq. (1.7) 
applied to the irN system assuming dynamical particles 
in the (^,|) and (f,§) states. The crossing matrices a 
and /3 are the same in this case: 

(1.9) 

for / , / = ! , ! . The two equations (1.7) in this case 
turn out to be identical. 

T 1 i /2 ) i /2==27 1 ; (1.10) 

which is consistent with experiment. If this result is 
now substituted into Eq. (1.8), we find the measure of 
the forces in the three states 

.F3 3/2,3/2= 7*3/2,3/2, 

F13/2,l/2=F1i/2,Z/2—0, 

F11/2,1/2— 2Y13/2,3/2. 

( l . l l ) 

Thus the assumed system of particles is consistent with 
the force criterion of the preceding paragraph. Further
more, we may expect a> 1/2,1/2<£03/2,3/2, in agreement with 
experiment. 

But one must be careful not to exaggerate the pre
dictive powers of this method. For, in fact, if we had 
assumed the existence of (J,f) and (§,§) particles as 
well, we would have obtained four equations (1.7), 
which reduce to the two conditions 

7 1/2,3 

27 1 3/2 ,3 /2=7 1 l /2 , l /2+Y 1 l /2 ,3 /2 . 
(1.12) 

All four Fu's are positive in this case and Chew's 
solution (1.10) is seen to be only one of a continuum of 
possible solutions. 

The generalization of the irN reciprocal bootstrap to 

the corresponding SU(3) multiplets is straightforward, 
although complicated slightly by the fact that the octet 
state has to be treated as a two-channel problem, so 
that Eq. (1.7) cannot be used. This problem is discussed 
in detail in Refs. 2 and 3. 

I I . x A S C A T T E R I N G 

Now we apply the same method to the scattering of 
pions by the / = / = § baryon (A). Here, forces are 
provided at least by N and A exchange; both these 
particles are TA P waves. However, our method is valid 
only in these states in which 7 = f or J = f , since the 
others communicate with the lower lying wN channel 
and therefore cannot be treated as single-channel prob
lems. The crossing matrices a and fi are once again the 
same: 

(2.1) 

What forces are there? We must certainly include N 
and A exchange, which we would expect to dominate. 
From the crossing matrix (2.1), F3 5/2,5/2 is evidently 
positive, while the sign in the remaining single-channel 
states depends on the ratio 733/2,3/2/Vi/2,i/2. Thus, we 
can predict an /== J—% particle; if we also exchange it, 
Eq. (1.7) gives 

73B/2,5/2= ( l / 4 ) 7 3 i / 2 , l / 2 

+ ( 4 / 2 5 ) 7
3 3 / 2 , 3 / 2 + ( l / 1 0 0 ) 7

3 5 / 2 , 6 / 2 ( 2 . 2 ) 

or 

a=/3= 

£nr J J—l 3 5 
i o r i , ^ - 2 > 2? 2* 

r i/6 
- 1 / 3 

I 1/2 

- 2 / 3 3/2 
11/15 3/5 
.2/5 1/10 

9 9 736/2,6/2 1 4 733/2,3/2 
(2.3) 

1/2,1/2 

To check on the possibility of particles in the other 
states, we need the ratio (733/2,3/2/Vi/2,1/2). Since 73i/2,i/2 
is known in terms of the wNA coupling constant, we 
then could also estimate from Eq. (2.3) the absolute 
magnitude of 735/2,5/2, thereby obtaining a prediction 
for the width of the decay of this resonance into x + A . 

Consider the amplitude Au for the inelastic process 
TTN —» xA. When there is a particle in the ( / , / ) state, 
this amplitude has a pole (yi/yi/y^/iuu—a)), where 
co—W—Mi. The Born term from the exchange of these 
particles is then 

Bu{a)= E airPjj>(yrj,*yrj>iyiy(o>I,j/+G>), (2.4) 
i'jf 

where a j j / = cojj— (Ms—Mi). The crossing matrices for 
this case are 

«=/?=( 
2/3 

• (Vl0) /6 

• ( V l 0 ) / 3 \ 

- 2 / 3 / 
(2.5) 

for/, 7= J, f. 
As in the case of elastic scattering, let us assume 

that the lowest intermediate state, i.e., the wN state, 
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is the most important. This means that the unitarity 
relation for Au is 

ImAu*fij*Au= (Nu(o>)/Du*(o>))Au. (2.6) 

Since lm.Au and Nu are real, Au must have the same 
phase6 as Du*1 on the right-hand cut. Thus it has the 
form 

AIj(a>) = nIj(a>)/DIJ(a>)J (2.7) 

where nu(w) has only left-hand singularities, Imnu 
= ImAIjDIj=ImBuDij. Therefore, nu(u>) satisfies 

nu(o))= X) aii'Pjj'L(yrj'3yi'j'1)liy(ui'j''+w)'l 

XDrj>(-o>Pj/). (2.8) 

If we use Eq. (1.6) for Du, a direct-channel pole resi
due is 

(yi/yijiyi2=—nrj(o>ij)/Drj
/(uij) 

= T,aii>PjAypj>*yi>j>1)11*, (2.9) 

a result analogous to Eq. (1.7). 
Since yu* = 0 unless I=J=%, f, the TN-^TA forces 

are provided by N and A exchange. The two equations 
(2.9) then turn out to be identical, and are 

2(7 33/2,3/27 13/2,3/2) 1 / 2=(7 3 l /2 , l /27 1 l /2 ) l /2) 1 / 2 . ( 2 . 1 0 ) 

If this result is combined with Eq. (1.10), we obtain 

7 3 3 / 2 , 3 / 2 / 7 3 l / 2 , l / 2 = i . ( 2 . H ) 

Finally, substituting (2.11) into (2.3), we get 

735/2.6/2/73l/2,l/2=i. (2.12) 

But 73i/2,i/2 is related kinematically to the TTNA coupling 
constant and hence t0 71

3/2,3/2 through 73i/2,1/2= 4713/2,3/2. 
Using Eq. (1.10), we therefore obtain finally 

735/2,5/2=f71l/2,l/2=2/2 (2.13) 

as the prediction of our static model for the width of 
the I—J—% resonance. Here, f2 is the wNN pseudo-
vector coupling constant and is numerically about 0.08. 

Recently, two pir+Tr+ resonances have been observed, 
one at 1560 MeV7 and one at 2400 MeV.8 Let us assume 
that the former can be identified with our ( | , | ) particle 
(see the Appendix). In that case, the latter may be its 
Regge recurrence with / = § . Then the slope of a 
straight-line Regge trajectory9 in the energy variable 
would be roughly the same as the slopes ofl/V, A, and A 
trajectories.10 Plotting a Breit-Wigner formula for the 

6 R. Omnes, Nuovo Cimento 8, 316 (1958). 
7 G. Goldhaber (private communication). 
8 This resonance is listed by M. Roos, Nucl. Phys. 52, 1 (1964). 
9 S. C. Frautschi, M. Gell-Mann, and F. Zachariasen, Phys. 

Rev. 126, 2204 (1962); G. F. Chew and S. C. Frautschi, Phys. Rev. 
Letters 7, 394 (1961) and 8, 41 (1962); R. Blankenbecler and 
M. L. Goldberger, Phys. Rev. 126, 766 (1962). 

10 These Regge trajectories are shown in G. F. Chew, M. Gell-
Mann, and A. H. Rosenfeld, Sci. Am. 210? 74 (February 1964), 

/ = 7 = | xA elastic cross section, 

127r^(7
35/2,B/2)2 

0"5/2,5/2-
(C0~ COB/2,5/2)2+g6(Y35/2,5/2)2 

(2.14) 

we find a full width at half-maximum of about 210 
MeV, if co5/2,5/2 is chosen so that the maximum is at 
1560 MeV. The width of the resonance of Ref. 7 is of 
the order of 200 MeV. 

Finally we can use Eq. (2.12) to check on the forces 
in the other single-channel states. The result, in re
markable analogy to (1.11), is 

^ 35/2,1/2= ^ , 3 l / 2 , 5 /2=7 , 3 5 /2 ,3 /2=^ 3 3 /2 ,5 /2=0 . ( 2 . 1 5 ) 

Thus it is consistent to assume that there are no reso
nances in the other wA states with 7 = f or / = f . n 

III. OCTET-DECIMET SCATTERING 

In this section we shall repeat the above calculation 
with all the particles involved promoted to SU(3) 
multiplets. Thus we consider the scattering of an octet 
of pseudoscalar P-wave mesons off a decimet of spin-f 
baryons. The reduction of the direct product meson-
baryon states is 

8x10=8+10+27+35. (3.1) 

Since no representation occurs twice on the right side 
of Eq. (3.1), we have to deal only with one-channel 
problems and therefore may apply the same scheme 
we used in the preceding sections. 

The crossing matrix an ' in Eq. (1.7) is now re
placed by12 

1/5 - 1 / 2 - 9 / 2 0 7/4 " 
-2/5 3/4 - 9 / 4 0 7/8 
-2/15 - 1 / 1 2 37/40 7/24 
2/5 1/4 9/40 1/8 J 

(3.2) 

where the rows and columns are labeled by the repre
sentation dimension F= 8, 10, 27, 35. Since all the 
entries in the bottom line of Eq. (3.2) are positive, as 
are those in the bottom row of (2.1), we find from our 
force criterion that a quinquetrigesimet of spin-f 
baryons may occur. If we also exchange these 35 iso
bars, then the SU(3) versions of (2.2) and (2.3) are 

7353= (1/5)Y83+ ( 1 / 1 0 ) T I O 3 + ( l /80) 7 35 3 (3.3) 

79T353 1 1 Yio3 

80 7s3 5 10 7s3 ' 
(3.4) 

where the isospin index in the residues has been re-

11 This should be contrasted with the conclusions of A. Messiah, 
Phys. Letters 1, 181 (1962), who also considered x-A scattering 
but predicted (f ,f) and (f ,f) resonances. This appears to be a 
consequence of his neglect of nucleon exchange. He also neglected 
the TTN intermediate state in the (4,i), (i,f), (f,i), and (f,f) 
states. 

12 D. E. Neville, Phys. Rev. 132, 844 (1963). 

lm.Au
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placed by an F index and the spin index has been 
dropped for brevity. 

To find the ratio YIOVTS3, we may generalize the wN —> 
7rA process to SU(3) and then follow exactly the pro
cedure in the previous section. The isotopic spin crossing 
matrix a in (2.5) is replaced by 

0 
1/V5 
V(2/S) 
2/3^5 

1/V5 
2/5 

-yH/S 
- 2 / 5 

- ( V l 0 ) / 4 
-y/2/4 
- 1 / 2 
-V2/6 

9 / V 5 
-27/20 
-9 /10 \£ 

1/10 
(3.5) 

where now the rows are labeled by F= 8A, 8S, 10, 27. 
Here, the amplitudes labeled 8A and 8S are for transi
tions from the antisymmetric and symmetric octets 
appearing in 8 x 8 into the octet appearing in 8 x 10. 
Their residues are (y^ysA1)112 and (y&^yss1)112, where, in 
terms of the TTNN coupling constant /2,2>3 

W = 1 2 ( l - a ) 7 2 , (3.6) 

T 8 S
1 =(20 /3 )aV 2 , (3.7) 

where a/( l—a) is the usual D to F ratio. Applying the 
generalization of Eq. (2.9) to the spin-f decimet state, 
we obtain 

7io 3 /T8 3=(l-fa) 23/ 2 /7 io 1 . (3.8) 

The ratio ( /VYIO1) has already been calculated by con
sidering the amplitude in the spin-f decimet state of 
elastic octet-octet scattering.2,3 The result is 

7 i o 1 = ( 1 6 / l l ) [ | a 2 + 4 « ( l - a ) ] / 2 . (3.9) 

Substituting this into (3.8), we obtain 

Yio3/W= ( l l / 6 4 ) ( 3 - 2 a ) / a . (3.10) 

To get an absolute number, we need the D to F 
ratio. This has been calculated in Refs. 2 and 3 using 
slightly different methods. The results are all in agree
ment with the poorly known experimental value, so in 
Table I we list the values of (TIOVTS3) and (735V783) 
for all the calculated values of a; these ratios are related 
to the residue ratios for the nonstrange components by 
simple kinematical factors. We see that the ratio 
(735/2,5/2/7* 1/2,1/2) is not very sensitive to the value of 
a and is approximately the same as the ratio § which 
we obtained using the SU(2) model; therefore, we pre-

TABLE I. Values of (YIOVYS3) and (735VT83), using Eqs. (3.4) 
and (3.10) for various values of a. The values a = 0.57, 0.78 cor
respond to the two solutions obtained in Ref. 3, while a = 0.69 was 
the value calculated in Ref. 2. The values of (735/2, 5/2/T3I/2 1/2) 
= (5/4)(T353/TS3) and (7*3/2, m/yhn, 1/2) = (25/32) (YIOVYS3) should 
be compared with the results of the SU(2) model of Sec. II . 

(TIOVTS3) ( Y S S V Y S 3 ) (T33/2,3/2/73] '2) (Y 3 ( '2/V 5/2,5/2/7 1/2,1/2, 

0.57 
0.69 
0.78 

0.56 
0.40 
0.32 

0.26 
0.24 
0.24 

0.44 
0.32 
0.25 

0.32 
0.31 
0.29 

TABLE II . The masses (in MeV) of the multiplets contained in 
the 35-dimensional representation calculated from Eq. (3.11) with 
a— —191 MeV and b = 32 MeV and with mo fixed by the require
ment that mi, 5/2= 1560 MeV. The corresponding lowest strong 
thresholds are listed for comparison. 

(Y,D myi Strong threshold 

(2,2) 
(1,1) 
(0,1) 

(-1,4) 
(-2,0) 
d,f) 
(0,2) 
(-1,1) 
(-2, 1) 
(-3, « 

1260 
1400 
1540 
1690 
1830 
1560 
1670 
1780 
1890 
2000 

TNK (1575) 
TTN (1080) 
TTA (1255) 
TTS (1460) 

TTTTO (1955) 
irirN (1220) 

TTS (1330) 
TTS (1460) 
71-a (1815) 

KQ (2170) 

7rA diet essentially the same width for the I—J= 
resonance as before. 

Finally, we can use our force criterion to check on the 
possibility of other resonances in the one-channel octet-
decimet states. Again we find that the other forces FF/ 
are negative or small compared with Fzh,hii> For in
stance, with a=0.57, we have 

^8,5 /2= 0.0337s3, 7*10,5/2= - 0 . 0 0 9 7 8 3 , 

^27,5/2= - 0 . 0 7 4 T 8 3 , ^335,l/2=0.023783 , 

and 
F335,3/2= - 0 . 0 1 1 7 8 3 , ^27,1/2= 0.122783 , 

i727,3/23=0.055783, 

while JP335,5/2= 0.2597s3. Therefore, either there are no 
resonances in the other states or else they lie so high 
that their effects are probably unimportant. 

Thus our model predicts 35 new spin-f even-parity 
baryons. Since the properties of a quinquetrigesimet are 
relatively unfamiliar,13 we conclude this section by de
scribing some of them briefly. The states may be 
classified by their hypercharge Y and isospin / and are 
listed in Table I I . In addition to the / = § nonstrange 
multiplet, our supermultiplet contains another Y— 1 
group with /= •§ . This 7 = f , J—% multiplet, which did 
not appear in our SU(2) model, will be seen in elastic 
7riV scattering only to the extent that SU(3) is violated. 

The masses of the 35 particles should satisfy the 
Gell-Mann-Okubo mass rule 

W F / = m 0 + a F + ^ [ / ( / + l ) - F 2 / 4 ] . (3.11) 

In general, a and b depend on j and two Casimir 
operators 

FiFi=l(m^+mim2+M22)+ (wi+w 2 ) 
and 

dijkFiFjF^ (l/18)(m1~m2) 

Xp+9(wi+W2)+2mi 2 +5wiW2+2w2 2 3 , 

where \jni,rn2~] is the highest weight of the representa
tion and is explained in the next section. 

13 Some of these properties are discussed by H. Harari and 
H. J. Lipkin, who noticed that some of the particles might be 
stable against strong decays, Phys. Rev. Letters 13, 345 (1964). 
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Now it has been suggested by Glashow and Sakurai14 

that the constants a and b may be the same for all 
SU(3) multiplets with the same baryon number. This 
is consistent with our knowledge of the masses of the 
spin-J octet and the spin-f decimet, provided a ~ —191 
MeV and 6—32 MeV. Using these values and the value 
1560 MeV for ^1,5/2 we obtain the masses listed in 
Table II.15 

From the table we see that three of the (Y,I) multi
plets are stable against strong decays. The (—2,0) 
would decay electromagnetically, while the F = 2 iso-
topic quintet and the F = — 3 isotopic doublet states 
would have to decay weakly. Therefore, provided the 
1560-MeV ir+T+p peak is really a member of a quin-
quetrigesimet (which is the smallest representation 
containing / = f ) , the existence of these metastable 
particles is a test of the conjectured universality of the 
constants a and b. 

IV. HIGHER SPIN STATES 

Let us forget the strange particles for a moment and 
turn back to our SU(2) model of Sees. I and I I . So far, 
we have found particles^in the (§, |) , ( | , | ) , and (f,f) 
states. This sequence suggests that if we calculated in 
a similar way the scattering of the pion and the ( | , | ) 
state, we might obtain a ( | ,J) particle, and repeating 
the same procedure indefinitely, continue the se
quence to ( | ,f) , (Vv¥~)> e t c Indeed, such an infinite 
sequence was obtained by Wentzel in the old strong-
coupling model,16 and by Tomonaga17 who used an 
intermediate coupling solution of the static model. 
Of course, we cannot predict the masses without going 
beyond our approximation,4 but the masses of the first 
three suggest an increase each time of the order of two 
pion masses. 

To see that we can indeed get such a sequence, con
sider the ( n + 1 , n+1) state in the scattering of a pion 
off an (n,n) baryon (n is half-integral). Presumably, 
this is the lowest state with these quantum numbers, so 
we have a one-channel problem. The crossing matrices 
are 

1 1 2n+3 

n(2n+l) n 

2n—l n2+n—l 

2n+l 

2n+3 

n(2n+l) n(n+l) (n+l)(2n+l) 

2n-l 1 1 

2n+l n+1 (n+l)(2n+l)j 

(4.1) 

14 S. L. Glashow and T. T. Sakurai, Nuovo Cimento 25. 337 
(1962).^ 

15 This calculation of the masses in the quinquetrigesimet was 
carried out by M. Gell-Mann, who also noticed that some of the 
particles might be stable against strong decays. 

16 G. Wentzel, Helv. Phys. Acta 13, 269 (1940); see also, W. 
Pauli and S. Dancoff, Phys. Rev. 62, 85 (1942). 

17 S. Tomonaga, Progr. Theoret. Phys. (Kyoto) 1, S3, 109 
(1946). 

for / (or J) — n—l,n,n+l. From this matrix it is 
evident that no matter what particles are exchanged, 
F2n

n+itn+i is always positive since the elements of a 
and /3 appearing on the right side of Eq. (1.8) are 
always in the bottom row of Eq. (4.1) and therefore 
positive. Thus, one may always expect a resonance in 
the (n+1, n+1) state. 

To show that it is consistent to have only / = / 
particles in our model, suppose we also exchange this 
(n+1, n+1) state together with the (n,n) and (n—1, 
n— 1) particles, which have already been produced at a 
previous stage. Then Eq. (1.7) gives 

/2n-l\2 f 1 \ 2 

7 2 V f i , n + i = ( 1 7 2 %_i ) W _i+( ) y n , 2 n 

\2n+lJ \n+lJ 

+ ( J y2nn+i,n+i. 
\(n+l)(2n+l)J 

Now we consider the process 

7r+ (n,n) —> 7r+ (n+1, n+1). 

The generalization of Eq. (2.9) is 

f^2n+2 , . , ,~2n \ l / 2 
VT n + l , n + l T n+l,n+lj 

(4.2) 

n(n+2)(2n+l) 
_(~, 2n+2^ 2rAl/2_J_ 

\Yn,n Yn,n ) I 

1 

(n+l)2(2n+S) (^+1)2 

X (y2n+2n+l,n+iy2nn+l,n+l)1/2 , (4 .3 ) 

since only the (n,n) and (n+1, n+1) isobars can be 
exchanged. I t is not difficult to show that the only pair 
of ratios which can satisfy Eqs. (4.2) and (4.3) and at 
the same time be consistent with the results of Sees. I 
and I I for n—\, f is 

T Ti-f-l.rH-l/T 7i,n 7 n+l,7i-f 1, Jin, 
= (2n+l)/(2n+3). (4.4) 

If we now use this result in Eq. (1.8), we find that 
i72wn+i)7,= F2^n+i,n_1=F2%, r i+1==F2w^1,n+1==0. Thus we 
do not obtain any dynamical particles with I^J. 

Equation (4.4) can also be used to get the width of 
an ( ^ + 1 , n+1) isobar when it decays into a pion and 
an (n,n) particle. We use the fact that both yn,n

2n+2 

and 72 n
n + i ,n + i are uniquely determined in terms of the 

coupling constant between a pion, an (n,n) particle and 
an (n+1, n+1) particle. This leads to the relation 

n+1. (4.5) 

Combining this with Eq. (4.4), we immediately obtain 
72n+2

rH_i,n+i=7?l,ri
2n. In particular, this implies yn,n

2n 

T. ,n 2 ^ 2 -C(2^+3) / (2^+ l ) ] 2 7 2 % + i ) 

:71i/2,i/2- Equation (4.4) therefore gives 

7 2 V r W i = ( 2 » + l ) / (2»+3)711/2,1/2, (4.6) 

which is just the reduced width in terms of 7^/2,1/2= 3/2. 
Can we find an analogous sequence of SU(3) multi-
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plets? In Sec. I l l we studied the scattering of the PS 
octet off a spin-f decimet and discovered the strongest 
attraction in the product state of highest / and highest 
SU(3) representation. This suggests that if we scatter 
the mesons off the new spin-f multiplet, we may obtain 
a spin- | multiplet transforming according to the largest 
representation which appears in 8 x 35, and so forth, 
leading to a sequence of states just as in the SU(2) 
case. To identify these representations, let us name 
them by their highest weights [^1,^2], which are de
fined so that the highest hypercharge which occurs is 
F m a x = (wi+2w2)/3, while the isotopic multiplet with 
Y= F m a x has I—mi/2. Thus the octet is a [1,1], the 
decimet a [3,0], and the quinquetrigesimet a [4,1]. 
The dimension of a general representation is (wi+1) 
X ( w 2 + l ) ( w i + w 2 + 2 ) / 2 . Therefore, the representa
tion for that multiplet in our sequence which has spin 
n is [w+f, n—\ ] , since this is the highest representa
tion occurring in the product of [1,1] with [n+|, n—•§]. 
In fact, the representation [w+f, n—f] contains I=n 
with 7 = 1 only once. Starting with w=f, the dimen
sions of the first few of these multiplets are 10, 35, 81, 
154, ••- . 

The same dynamical arguments as in the SU(2) case 
can be used to show that our model will indeed produce 
this sequence. Using the SU(3) generalization of Eq. 
(1.8), the force FFJ in the highest state is given en
tirely in terms of crossed-channel residues with co
efficients which are products of an element from the 
bottom row of the angular-momentum crossing matrix 
(4.1) with one from the bottom row of the appropriate 
SU(3) crossing matrix. These elements are always 
positive, since in both cases they are squares of Clebsch-
Gordan coefficients. Therefore, FFJ is always positive 
in the state of highest / and highest SU(3) representa
tion, which means that we can always expect a particle 
in such a state. We cannot of course argue as we could 
for the SU(2) case, that these are in general the only 
particles which our model would give rise to. 

We conclude with some speculative observations. A 
sequence of multiplets for which / (or F) as well as / 
increases with the mass suggests that it might be 
fruitful to study continuation in these internal quantum 
numbers in analogy to the Regge continuation in angu
lar momentum. Our results may shed a little light on 
the nature of this continuation. 

The most striking feature of our sequences of states 
is that it is not 7 a s a function of W for fixed / [in the 
SU(2) case] which most resembles a Regge trajectory, 
but rather a curve obtained by increasing both / and / 
simultaneously. Furthermore, if the / = / versus W 
curve is interpolated between the points 940, 1240, and 
1560 MeV, which we assume are the first three physical 
points lying at I=J=%, f, f, then the slope of this new 
type of trajectory is roughly the same as the slopes of 
the usual baryon Regge trajectories of which these 
particles are the lowest members. In other words, if 
the first Regge recurrences of the 2V, A, and f, f par

ticles are indeed at 1690, 1920, and 2400 MeV, respec
tively, all the Regge trajectories lie on top of each other 
to within 100 MeV or so. If this notion is extended to 
SU(3) multiplets, we arrive at the rule that all Regge 
trajectories with B—l are degenerate. This rule is 
broken by only 10-20%, the principal manifestation of 
the breaking being that higher I (nonstrange) tra
jectories He somewhat higher than those with lower / . 
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APPENDIX 

Calculation of the Lowest Particle Masses 
in the SU(2) Model 

To calculate the masses of our isobars, we have to 
make one additional assumption. For example, let 
us assume that the cutoff A in Eq. (1.5) is the same in 
all cases. I t can then be calculated by requiring that 
the D function vanish at o)=0 in the (J,J) state in 7nV 
scattering. For simplicity, we shall also assume that the 
D function is linear with the value and slope normalized 
at the physical threshold o)=l . In other words, we 
approximate Eq. (1.5) by 

Z>Z,(G>) = 1 / </coV 2 - l ) 3 / 2 , (Al) 
w 7 i ( w ' - l ) 2 

taking 0)0= 1. This approximation is consistent with 
Eq. (1.6) and so all our results on coupling constant 
ratios can be taken over. 

The equations Du(cou) = 0 in the irN scattering for 
I—J=\ and / = / = § can now be solved simultaneously 
for A and 053/2,3/2, since 0)1/2,1/2=0 and since we know 
T11/2,1/2 and Y1 3/2,3/2 in terms of the wNN coupling 
constant / 2 =0 .08 . The result is A=7.1 and 0)3/2,3/2 
= 1.88. If we take this A as well as the values of YJV8 

obtained in Sec. I I and solve ^5/2,5/2(0)5/2,5/2) = 0 in irA 
scattering, we obtain 0)5/2,5/2= 3.14. 

The above process can be continued indefinitely. Thus 
we can calculate the mass of the (J, J) particle in ir 
— (f ,f) scattering, the (f ,§) mass in IT— ( | , | ) scattering, 
etc. At every stage we can use the general formulas of 
Sec. IV to obtain the needed residues. We obtain 
0)7/2,7/2=4.8,0)9/2,9/2=11.5, •••. However, we see that 
0)9/2,9/2>A, which means that our simple cutoff model 
cannot be applied in this case. Since the masses of all 
the higher isobars depend on this mass, they cannot be 
calculated correctly either. 

Therefore, we can predict only the ( f , | ) , (f , | ) , and 
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(hi) masses within our scheme. Assuming the pion and 
nucleon masses and the TNN coupling constant to be 
known, these turn out to be 1200, 1640, and 2310 MeV. 
I t is a curious fact that, together with the nucleon, 
which has a mass of 940 MeV, these masses mj obey 
to a few percent the rigid rotator formula mj 
= AJ(J+1)+B, where A and B are constants. This is 
exactly the prediction of the strong-coupling model16 

which, however, had an additional arbitrary parameter. 

I. INTRODUCTION 

ELASTIC and inelastic reaction amplitudes of ele
mentary particles and isobars at high energies 

characteristically exhibit a peak in the forward direction. 
In some reactions, such as proton-antiproton elastic 
scattering,1 the form of the amplitude can be readily in
terpreted by analogy with optical diffraction patterns, 
suggesting a semiclassical picture of the nucleon with an 
absorptive core and a diffuse boundary, phenomenologi-
cally of Gaussian shape. In some other cases, for 
example2 K++p-^ K°+Nz/2*++, the center-of-mass 
angular distribution of the production reaction is 
clearly consistent with a one-meson exchange formula. 
The most common high-energy reaction behavior seems 
to be intermediate between these extremes. 

Phenomenological corrections to one-particle ex
change formulas based on the introduction of form fac
tors have been widely used in the analysis of peripheral 
inelastic processes,3 but these form factors have at least 
two objectionable properties. The first is lack of 
generalizability; evidence has accumulated that such a 
form factor appropriate to the vertex pirw has a behavior 
much different from that for the pKK vertex,2 while a 

* * Partially supported by the National Science Foundation. 
1 K. J. Foley, S. J. Lindenbaum, W. A. Love, S. Ozaki, J. J. 

Russell, and L. C. L. Yuan, Phys. Rev. Letters 11, 503 (1963). 
2 V. Barger and E. McCliment, Phys. Letters 9, 191 (1964). 
3 E. Ferrari, Nuovo Cimento 30, 240 (1963); E. Ferrari and F. 

Sellari, Nuovo Cimento 27, 1450 (1963). 

The above masses of the (f,f) and (f,f) particles 
should be compared with the experimental values of 
1240 and 1560 MeV, respectively. In the latter case we 
are assuming, of course, that we can identify our par
ticle with the resonance of Ref. 7. [Actually, the value 
co5/2,5/2 in Eq. (2.14) does not coincide with the maxi
mum of the cross section; it corresponds to 1650 MeV, 
which may be the more appropriate quantity to com
pare with our calculated value.] 

close relation between these form factors would be ex
pected in various symmetry schemes such as unitary 
symmetry. 

The second is a lack of theoretical foundation within 
the framework of dispersion, or on-the-mass-shell, tech
niques. A form factor may be expected to have an im
portant influence in a perturbation-theoretic approach, 
but even then it is difficult to see the source of such large 
variations as are required to fit the data. This point 
has been discussed by Durand and Chiu,4 Ross and 
Shaw,5 and earlier by Baker and Blankenbecler.6 

The authors (particularly Refs. 4 and 5) also point 
out that the inclusion of initial and final-state inter
actions, usually taken to be strong elastic scattering 
vi th a diffraction character, is very important in the 
analysis of peripheral inelastic processes; and, in fact, 
these corrections may be quite sufficient to explain the 
deviations from one-meson exchange previously ascribed 
to form factors. Essentially the same conclusion has 
been reached by Dar and Tobocman in a slightly dif
ferent language; a detailed discussion of the mechanism 
has been given by Gottfried and Jackson.7 

4 L. Durand and Y. T. Chiu, Phys. Rev. Letters 12, 399 (1964). 
6 M . H. Ross and G. L. Shaw, Phys. Rev. Letters 12, 672 

(1964). 
6 M. Baker and R. Blankenbecler, Phys. Rev. 128, 415 (1962). 
7 A. Dar and W. Tobocman, Phys. Rev. Letters 12, 511 (1964); 

A. Dar, ibid. 13, 91 (1964). K. Gottfried and J. D. Jackson, CERN 
paper, 1964 (unpublished), 
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An approximate dispersion-theoretic treatment of peripheral inelastic processes is introduced with the aid 
of a J^-matrix formalism based on the impact-parameter representation of Blankenbecler and Goldberger. 
The method allows the use of one-meson exchange poles as a framework for constructing a multichannel 
scattering amplitude which satisfies unitarity in the high-energy region, allowing for an indefinitely large 
number of open channels. The reaction matrix is time-reversal symmetric and exhibits any other symmetries 
of the pole terms. Applications are numerically worked out for models of high-energy Kp and np charge ex
change, and in the former case satisfactory agreement with experiments is achieved. A qualitative discussion 
is given of peripheral isobar production models. The high-energy pp and Kp diffraction scattering is ex
amined, as well as the agreement of the small-momentum-transfer behavior with a simple model not involv
ing Regge poles. The method sheds no light on the difference between pp and pp scattering at high energies. 


